先准备好工具类:
新建HistogramFilter.java
package com.terrynow.test.imagecompare;
import java.awt.image.BufferedImage;
public class HistogramFilter {
private int redBins;
private int greenBins;
private int blueBins;
public HistogramFilter() {
redBins = greenBins = blueBins = 4;
}
public void setRedBinCount(int redBinCount) {
this.redBins = redBinCount;
}
public void setGreenBinCount(int greenBinCount) {
this.greenBins = greenBinCount;
}
public void setBlueBinCount(int blueBinCount) {
this.blueBins = blueBinCount;
}
public float[] filter(byte[] imageBytes) {
try {
ByteArrayInputStream bais = new ByteArrayInputStream(imageBytes);
BufferedImage bufferedImage = ImageIO.read(bais);
return filter(bufferedImage, null);
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
@SuppressWarnings("unused")
public float[] filter(BufferedImage src, BufferedImage dest) {
int width = src.getWidth();
int height = src.getHeight();
int[] inPixels = new int[width*height];
float[] histogramData = new float[redBins * greenBins * blueBins];
getRGB( src, 0, 0, width, height, inPixels );
int index = 0;
int redIdx = 0, greenIdx = 0, blueIdx = 0;
int singleIndex = 0;
float total = 0;
for(int row=0; row<height; row++) {
int ta = 0, tr = 0, tg = 0, tb = 0;
for(int col=0; col<width; col++) {
index = row * width + col;
ta = (inPixels[index] >> 24) & 0xff;
tr = (inPixels[index] >> 16) & 0xff;
tg = (inPixels[index] >> 8) & 0xff;
tb = inPixels[index] & 0xff;
redIdx = (int)getBinIndex(redBins, tr, 255);
greenIdx = (int)getBinIndex(greenBins, tg, 255);
blueIdx = (int)getBinIndex(blueBins, tb, 255);
singleIndex = redIdx + greenIdx * redBins + blueIdx * redBins * greenBins;
histogramData[singleIndex] += 1;
total += 1;
}
}
// start to normalize the histogram data
for (int i = 0; i < histogramData.length; i++)
{
histogramData[i] = histogramData[i] / total;
}
return histogramData;
}
private float getBinIndex(int binCount, int color, int colorMaxValue) {
float binIndex = (((float)color)/((float)colorMaxValue)) * ((float)binCount);
if(binIndex >= binCount)
binIndex = binCount - 1;
return binIndex;
}
public int[] getRGB( BufferedImage image, int x, int y, int width, int height, int[] pixels ) {
int type = image.getType();
if ( type == BufferedImage.TYPE_INT_ARGB || type == BufferedImage.TYPE_INT_RGB )
return (int [])image.getRaster().getDataElements( x, y, width, height, pixels );
return image.getRGB( x, y, width, height, pixels, 0, width );
}
}
如何使用
public static void main(String[] args) throws Exception {
//从文件读取图片的bytes或者从BufferedImage读取都可以
byte[] imageBytes1 = FileUtils.readFileToByteArray(new File("/path/to/image1.jpg"));
byte[] imageBytes2 = FileUtils.readFileToByteArray(new File("/path/to/image2.jpg"));
HistogramFilter hfilter = new HistogramFilter();
float[] sourceData = hfilter.filter(imageBytes1);
float[] candidateData = hfilter.filter(imageBytes2);
System.out.println(calcImageSimilarity(sourceData, candidateData));
}
//相似度从0-1之间的double
public static double calcImageSimilarity(float[] sourceData, float[] candidateData) {
double[] mixedData = new double[sourceData.length];
for (int i = 0; i < sourceData.length; i++) {
mixedData[i] = Math.sqrt(sourceData[i] * candidateData[i]);
}
double similarity = 0;
for (int i = 0; i < mixedData.length; i++) {
similarity += mixedData[i];
}
return similarity;
}
文章评论